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Abstract—Protein-ligand docking programs are valuable tools 

in the modern drug discovery process for predicting the complex 

structure of a small molecule ligand and the target protein. Often, 

the configurational search algorithm in the docking tool consists 

of global search and local search. The former is to explore widely 

for promising regions in the search space and the latter is to 

optimize a candidate solution to a local optimum.  However, 

accurate local search methods such as gradient-based Newton 

methods are very costly. In this investigation, we present a new 

approach to enhance the time efficiency of a docking program by 

introducing a two-stage local search method. Given a candidate 

solution, a rough local search is performed in the first stage to 

determine the potentiality of the solution. Only if the solution is 

promising, the second stage with a full local search will be 

performed. Our method has been realized in the PSOVina 

docking program and tested on two data sets. The experimental 

results show that two-stage local search achieves almost 2x 

speedup to conventional one-stage method, it also enhances the 

prediction performance of the docking method in terms of 

increased success rate and RMSD.  

Keywords—protein-ligand docking; local search; PSOVina; 

PSO; BFGS; optimization  

I. INTRODUCTION  

Protein-ligand docking has been routinely used for 
structure-based drug design in the modern drug discovery 
process [1]. Given a target protein relevant to the disease of 
interest, the main goal of docking is to predict the complex 
structure of a small-molecule ligand bound to the active site of 
the protein. This structure, if correctly predicted, allows one to 
study the specific interactions between the binding partners and 
to estimate the binding affinity. Starting from a large library of 
ligands, each ligand will be docked to the protein, ranked, and 
filtered through the process of virtual screening; only ligands 
that bind with a high level of affinity are selected as lead 
compounds and to be further optimized through the lead 
optimization cycle. The most potent compounds among the 
candidates will be transferred to the preclinical test phase and 
finally to the clinical test phase. Therefore, protein-ligand 
docking serves as the foremost important steps in drug 
development. High quality docking can significantly cut down 
the time and cost for the initial lead selection steps and help 
guiding biological experiments throughout the process.   

Computationally, the docking problem is an optimization 
task which is to search for the minimum energy ligand 

configuration upon complexation with protein, including its 
position, orientation and conformation. Here, the ligand 
conformation refers to the spatial arrangements of the ligand 
atoms by rotation about single bonds. The number of rotatable 
bonds in a ligand varies from 0 to 100; the larger the number of 
rotatable bonds that a ligand has, the greater the flexibility of it.  
When there are many rotatable bonds to be considered in the 
docking process, the optimization task becomes extremely 
challenging as the number of potential ligand configurations 
are exponential.  The docking problem becomes even more 
intractable when protein flexibility (including change in 
configurations of selected parts of the protein sidechain or 
backbone) and other environmental factors (such as location of 
water molecules and ions) are taken into account.  

So far, a wide range of optimization strategies have been 
proposed to solve the configurational search problem. These 
include simulated annealing (SA) [2], Monte Carlo (MC) [3], 
and genetic algorithm (GA) [4], etc. Recently, new heuristic-
based approaches using particle swarm optimization (PSO) and 
other nature-inspired methods such as ant-colony optimization 
have been introduced as alternative search algorithms. The 
advantages of these population-based metaheuristics are their 
simplicity in implementation, fast convergence, robustness, and 
ease of parallelization in multicore CPU/GPU computing 
architectures. Of particular interest is PSO and their variants as 
they are known to be efficient for solving continuous nonlinear 
optimization problems. A few PSO-based docking methods 
have been implemented to date, such as SODOCK [5], 
PSO@AutoDock [6], FIPSDock [7], and PSOVina [8]. All 
proved to be superior to methods using traditional optimization 
strategies in terms of convergence performance and obtained 
energy.  In these implementations, PSO serves as the global 
optimizer to rapidly locate promising regions in the search 
space while the local search method localizes the approximated 
solutions to local minima from PSO moves and thus increasing 
the chance to find the optimal solution. Especially for highly 
flexible ligands, local search is essential to obtain good docked 
energies and accurate conformation for highly flexible ligands 
[5, 6]. The success of local search was attributed to its ability to 
maintain diversity of PSO particles similar to the mutation 
operator and could better avoid premature convergence to 
occur [5]. However, the main disadvantage of incorporating a 
local search routine into the optimization process is the 
increased cost for additional steps, for both solution generation 
and energy evaluation. For example, in the study of [6], 



method which hybridized PSO with Solis and Wets local 
search increased the computing time by 3 fold as compared to 
the one without local search.  

Our recently proposed docking method PSOVina, is also a 
hybrid model that combines PSO global search and BFGS 
local search for solving the protein-ligand docking problem [8]. 
Facing the inherently high computing cost of the BFGS local 
search algorithm, PSOVina provides merely 1.79x speedup 
over its original code AutoDock Vina although PSO converges 
faster than the MC search in Vina [9]. To improve the time 
efficiency while maintaining the docking performance of 
PSOVina, in this investigation, we presents a novel algorithm 
called two-stage local search (abbreviated as 2LS) to break up 
the original local search loop into stages of rough search and 
full search. This approach successfully reduces the time wasted 
in optimizing unpromising solutions therefore increases the run 
time performance of the search. Using the diverse PDBbind 
dataset and the selected 17 complexes from the GOLD 
benchmark dataset, we compared PSOVina

2LS
 to PSOVina, 

AutoDock Vina, and seven additional state-of-the-art docking 
methods. Experiment results reveal that PSOVina

2LS
 achieves 

1.92x speedup over PSOVina, 3.44x speedup over AutoDock 
Vina and yields the highest success rate among all methods.   

II. BACKGROUND 

A. Protein-Ligand Docking in AutoDock Vina 

AutoDock Vina [9] is the new implementation of the 
AutoDock [10] flexible protein-ligand docking program. In 
Vina, the protein is treated as rigid while the ligand is treated 
as a flexible molecule. As such, a ligand configuration is 
represented by (i) its position in Cartesian coordinates (x, y, z), 
denoting the translation of the ligand relative to the center of 
the box enclosing the active site; (ii) its orientation in quaterion 
(q0, q1, q2, q3), where [q0, q1, q2] denotes a vector as axis and q3 

the rotation angle about this axis; and (iii) the torsional angles 
of τ rotatable bonds (r0, r1, .. , rτ-1). Therefore, each candidate 
solution consists of 7 + τ parameters which will be evaluated 
according to the scoring function of Vina.  

In essence, Vina adopts an empirical-based scoring 
function which is a weighted sum of interaction terms 
including steric, hydrophobic and hydrogen bond interactions, 
and a conformation-independent term based on the number of 
active rotatable bonds between heavy atoms.  

For the optimization algorithm, Vina uses the Iterated Local 
Search global optimizer where a succession of mutations and 
local optimization based on the Broyden-Fletcher-Goldfarb-
Shannon (BFGS) algorithm are taken and the move in each 
iteration is accepted according to the Metropolis criterion. The 
maximum number of iteration is a heuristic function of the 
number of ligand rotatable bonds that is determined at the 
beginning of the run. Vina allows the user to perform the run 
several times in parallel starting from different ligand 
configurations, then it combines and ranks the best solution 
found in all runs to produce the final result.  

B. PSOVina 

PSOVina is our recently released docking program based 
on the AutoDock Vina software [8]. It uses a modified version 

of the standard PSO as the global optimizer together with the 
BFGS local search and Vina’s scoring methods. 

PSO is a population-based search algorithm inspired by 
social behaviors of birds. The population is called a swarm and 
each individual is called a particle.  In the standard version of 
PSO, each particle moves around the search space with a 
velocity. The position of a particle i is encoded in a D-
dimensional vector Xi = [xi1,..,xiD] where D is the number of 
dimensions to be optimized and its velocity in the vector of the 
same size Vi = [vi1,..,viD]. Each particle remembers the best 
position it has ever visited, which is called pbest and denoted 

as 
*

iX ; the swarm remembers the best position that the group 

as a whole has ever visited, which is called gbest and denoted 
as Xg. The particles move over iteration t according to the 
following update mechanism: 

)((()+)(=)( tX rand αtV ω1+tV
*

iii − ))(tX i  

)(( ()+ tXrand β                  g − ))(tX i  (1) 

 )+(+)(=)+( 1tVtX1tX iii   (2) 

where the positive constants ω, α and β are the inertia, 
cognitive and social weights to be specified by the user. Proper 
tuning of these parameters is important to ensure the search 
efficiency of the swarm. The function rand() is a uniform 
random number generator yielding the value between 0 and 1 
at each entry. 

In PSOVina, each PSO particle represents one ligand 
configuration. At the start of a global search iteration, a ligand 
transformation type – translation, rotation, or torsional 
rotation – is randomly selected.   Then, a local optimization is 
carried out on each particle and the fitness value is calculated. 
The pbest and gbest are updated to solutions with better fitness 
values if they are found. Afterwards, the next generation of 
swarm pertaining to the selected transformation type was 
generated following the velocity and position updates 
mechanism. To maintain diversity of the swarm population, 
particles moved outside of the search space are reinitialized to 
random positions within the active site based on the 
regeneration principle. Finally, the search terminates until 
gbest is converged or the maximum number of iterations is 
reached. Our experiments of docking and virtual screening 
showed that PSOVina achieved a remarkable time reduction of 
51-60% as compared to Vina with some improvements 
regarding docking accuracies.  

C. Application of Local Search on Docking Problem  

As mentioned above, the goal of local search is to locate 
the local minimum for the approximated solution resulted from 
a global search move. It increases the success rate of finding 
the global minimum in protein-ligand docking problem, 
especially for highly flexible ligands.  

Several local search methods have been widely employed 
in protein-ligand docking programs. For example, a simplex 
local search algorithm described by Nelder and Mead (NMS) 
[11] was used in PLANTS, an ant-colony optimization docking 
program by Korb et al. [12]. Simply speaking, NMS transforms 
the vertices of a polytope by reflection, expansion and 

Funded by University of Macau (grant number MYRG2015-00212-FST) Funded by University of Macau (grant number MYRG2015-00212-FST) 



contraction operations until the fractional range from the 
highest to the lowest point in the simplex with respect to the 
function value is less than a tolerance value or until a 
maximum number of function evaluations is reached. In 
PLANTS, NMS local search was conducted on each solution 
carried by an ant and reapplied it to iteration-best ant to further 
improve the solution.  

Another popular local search method for protein-ligand 
docking problem is Solis and Wets [13]. It was employed in 
AutoDock 4 [10] and numerous other programs and shown to 
be greatly efficient [14]. The Solis and Wets algorithm is a 
directed search method with an adaptive step size. Starting 
from a candidate, two new solutions are generated by adding or 
subtracting a random value drawn from a normal distribution 
whose standard deviation is controlled by a parameter ρ. If 
either of the new solutions is better, one success is counted and 
the current solution is replaced with the successful solution; 
otherwise, one failure is counted. If number of consecutive 
successes is met, ρ is multiplied by an expansion factor to 
allow larger leaps between the current and the next solution; on 
the contrary, if number of consecutive failures is recorded, the 
value of ρ is reduced by multiplying with a contraction factor 
to effectively localizing the search. The search is terminated 
when ρ falls below a lower-bound threshold or reaches the 
maximum of steps.  

The new release of AutoDock program, AutoDock Vina [9] 
employed a quasi-Newton local search method called BFGS. 
BFGS is named after the first letter of the names of its 
inventors, Broyden, Fletcher, Goldfarb and Shanno. It aims to 
estimate an approximate of the inverse of Hessian matrix and 
at the same time uses less calculation than the Newton method. 
The procedure of this method is shown below: 

(Step1) Set Hk as the approximation of the inverse of the 
Hessian matrix. The initial point is x0 and the error limit ϵ > 0. 
Initially, H0 = 1 and k = 0. 

(Step 2) Calculate the search direction =kp − )( ∇ kk xfH  (3) 

(Step 3) Find the value αk>0, which makes

)+(=)+(
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(Step 4) Update kkk1+k pαxx +=  (5) 

(Step 5) If )( ∇ 1+kxf  ≤  ϵ, terminate the algorithm and output 

xk+1 as the approximate minimum. Otherwise continue. 

(Step 6) Update the approximate matrix by 
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  Set k = k+1, go back to (Step 2). 

In Step 3, αk is found by performing line search in the direction 
of pk.  

The primary advantages of BFGS are that there is no need to 
solve the Hessian matrix which is very costly and the update 
equation to obtain the approximate matrix in every iteration 
can be computed easily.  

 While different docking programs may have different 
favors of local search for the task, an interesting question to 
answer is whether there exists the best method for the problem. 
Tavares and co-workers in the studies of the impact of local 
search on protein-ligand docking optimization [15, 16] tried to 
answer this question: They defined a structural distance 
measure dstruct(A, B) of two solutions (A and B) by calculating 
the absolute difference between the root-mean-square 
deviations of the two ligand docking poses to the experimental 
conformation. In this way, the amount of innovation introduced 
by successive m iterations (in each iteration includes global 
search moves with or without local search moves) in an 
optimization method can be quantified with the value of d-

struct(A, A
m
). The method having small innovation value implies 

a small modification in the ligand docking poses after some 
iterations and is referred as having strong locality; if the value 
is large, it is referred as weak locality. A good local search 
algorithm should introduce some degrees of innovation yet 
non-excessive to the solution generated by global search moves 
in order to explore the neighborhood of the current solution in 
focus and efficiently. Based on this framework, Tavares and 
co-workers showed that neither the simplex local search NMS 
nor the popular Solis and Wets algorithm is an ideal local 
search method since its solution quality is similar to global 
searching using GA. Instead, BFGS was shown to greatly 
enhance the prediction accuracy and fitness of the final 
solution in a test of 8 complexes data set [16].  

III. THE PROPOSED TWO-STAGE LOCAL SEARCH ALGORITHM 

Our docking program PSOVina is also a hybrid global and 
local search algorithm - using PSO for the former and BFGS 
for the latter – to achieve efficiency and accuracy in searching 
for the optimal ligand configuration. Based on our observations, 
the use of local search here is crucial for locating the optimal 
solution since a slight overlap of atoms (ligand-ligand or 
ligand-protein atoms) will result in atomic clashes that will 
lead to a large increase in potential energy. Performing a local 
search can effectively remove those high energetic interactions 
and find the best “local” adjustment of ligand atomic positions 
with respect to the surrounding protein atoms.  

In the BFGS algorithm implemented in AutoDock Vina, a 
maximum step size of 1000 is set for each local search 

invocation. The search will stop only if 
-5

10≤)( ∇ 1+kxf  

(step 5 in BFGS algorithm) or the maximum number of steps is 
reached. Based on our observations, in most of the cases the 
searches run until the maximum number of steps and thus a full 
local search is often executed. However, a full local search is 
not always necessary especially when the position of the 
particle is far from the global optimal solution.  

In order to reduce the local search computations in 
optimizing positions of unpromising particles, here we propose 



a two-stage local search method. The idea is to first do a 
shorter or rough local search on a given solution in order to 
assess the potentiality of it to contribute to a successful global 
search. A high-potential solution is the one which is better than 
known historical best solution of a particle (pbest).  If it is a 
high-potential solution, a full local search will be performed to 
further optimize its positional values. Since the fitness value 
obtained by a rough local search is greatly different from the 
one by a full local search, it is necessary to maintain two sets of 
historical best solutions; one obtained from rough local search 
and another from full local search.  

The flowchart of our proposed two-stage local search 
method is presented in Fig. 1. At the start, the position and 
velocity of all particles are initialized to random values. Two-
stage local search will be performed to optimize the position of 
each particle: In the first stage, the fitness (fitness1) of a 
particle is calculated by a rough local search according to the 
roughing factor (R). This roughing factor, typically having 
value between 0 and 1, is a predefined value to determine how 
much shorter (or rougher) the local search is by reducing the 

maximum number of step in the first stage of the local search 
by a factor of R. If the fitness is better than its particle’s best 
position obtained from previous rough local searches (pbest1), 
then pbest1 will be updated and the second stage is invoked. 
Here, in the second stage, the fitness (fitness2) of a particle is 
calculated by the full local search. If the fitness is better than 
the particle’s best position obtained from previous full local 
searches (pbest2), then pbest2 will be updated. The global best 
solution gbest is compared to the fitness and get updated if the 
fitness is better. Finally, normal PSO procedure is resumed to 
generate the velocity and position of the particle. The search 
will stop if gbest is converged or the maximum number of step 
is reached.  

Since in the beginning of the PSO exploration, particles are 
still roaming in random positions far from the optimal solution, 
the second stage local search should be invoked in the first Cr 
iterations in any case in order to obtain more accurate 
information of the search space.  

 

Fig. 1. Flowchart of the proposed two-stage local search method. 

 



IV. EXPERIMENTS AND RESULTS 

A Data Sets 

Two data sets were used to assess the docking performance 
of PSOVina with two-stage local search and without: The first 
data set is obtained from the PDBbind-CN database, which is a 
manually curated database of a collection of known 3D 
structures of protein-ligand complexes with experimentally 
measured binding affinity data [17]. Specifically, we used the 
core-set data from the latest PDBbind v2014 which has been 
widely used for testing scoring functions in protein-ligand 
binding affinity prediction. It contains 195 good quality 
structures with resolution ≤ 0.25 nm obtained from 
systematically sampling of complexes from protein clusters 
with strongest, medium, and weakest binding protein-ligand 
structures. To also benchmark our method to state-of-the-art 
docking programs, such as FIPSDock, PSO@AutoDock, 
SODOCK, Glide, GOLD, FlexX, and Surflex, a selection of 17 
complexes derived from the GOLD benchmark data set [18], 
which are also classified as high-quality complexes in the 
PDBbind database (in the refined-set but not the core-set), 
were used. These are (PDB ID) 1ATL, 1BMA, 1CBX, 1FKG, 
1FKI, 1HSL, 1LAH, 1LCP, 1LST, 1TMN, 1TNG, 1TNI, 
2CGR, 2CHT, 2CTC, 2SIM, 6RNT. 

Before the docking process, the search space in the 
coordinate system of the protein has to be specified. For this, 
the pocket PDB file of each of the complex included in the data 
set was used.  The center of the search space was defined as the 
geometric center of the protein’s active site and the dimensions 
were determined from the minimal rectangular box enclosing 
all active-site atoms.  

B. Performance Metrics 

To evaluate the accuracy of the ligand docked pose, we 
compare the predicted position of each ligand atom to its 
experimental position in the experimental structure using the 
standard root-mean-square deviation (RMSD):  

n

zzyyxx
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where n is the number of ligand atoms and xexpt, yexpt, zexpt  are 
the Cartesian coordinates of atoms in the experimental 
structure.  

As a rule of thumb, docking poses having RMSD below or 
equal to 0.2 nm are considered successful predictions, between 
0.2 and 0.3 nm are classified as partially docked.  

All docking simulations were conducted on a Dell XPS 
8700 desktop with Intel Core i7 quad-core 3.6 GHz processor 
and 24 GB memory running Linux operating system.  

C. Results 

In the following experiments, we compare the prediction 
performances of three protein-ligand docking methods: the 
proposed two-stage local search method implemented in 
PSOVina (PSOVina

2LS
), the original PSOVina, and AutoDock 

Vina.  

To get a general idea of how our proposed two-stage local 
search method performed, we first ran predictions over the 
PDBbind core-set and measured the RMSD, correlation 
coefficient (r) of the predicted binding affinity to the 
experimental binding affinity, success rate, number of 
iterations to convergence, and runtime per docking instance. 
For each complex in the data set, 30 docking repeats were 
performed and the optimal docked pose was selected to be the 
one with the lowest predicted binding affinity (here called the 
overall-lowest-energy docked pose). 

For PSOVina and PSOVina
2LS

, the same PSO parameters 
were used: N = 8, ω = 0.36, α = β = 0.99. For PSOVina

2LS
, we 

set R = 0.5 and Cr = 20. 

The prediction accuracy and the prediction behavior of the 
three methods can be seen in Fig. 2 by plotting the average 
RMSD of the overall-lowest-energy docked poses over the 
docking repeat.  Overall, the prediction performance follows 
this PSOVina

2LS
 > PSOVina > AutoDock Vina and the three 

methods show very different behavior. The performance of 
AutoDock Vina is very stable regardless of the number of 
docking repeats conducted.  This is a desirable behavior of a 
prediction method as the need to repeat the docking experiment 
can be reduced. PSOVina performs better than AutoDock Vina 
in terms of average RMSD over all docking repeats; however, 
the prediction performance shows some fluctuations (between 
the 1

st
 and the 10

th 
docking repeats). It is also noted that more 

docking repeats do not get the prediction accuracy improved. 
Interestingly, such instability was not inherited to PSOVina

2LS
. 

After 6 docking repeats, PSOVina
2LS

 has already reached the 
lowest RMSD value of 0.199 nm which is maintained around 
this value until 30 docking repeats. 

Fig. 2. Comparison of prediction accuracies of PSOVina2LS, PSOVina, and 

Autodock Vina in terms of average RMSD of the overall-lowest-energy 
docked poses using the PDBbind data set. 

 

TABLE I.  SUMMARY OF PREDICTION AND RUNTIME PERFROMANCES OF 

PSOVINA
2LS, PSOVINA, AND AUTODOCK VINA USING THE PDBBIND DATA 

SET 

 PSOVina
2LS

 PSOVina Vina 

Value SD Value SD Value SD 

RMSD 

(nm) 
0.199 0.233 0.236 0.270 0.264 0.285 

r 0.569 – 0.571 – 0.611 – 

Success 

rate (%) 
70.77 – 65.64 – 63.08 – 

Number 

of 

iteration 

938.36 589.10 883.58 576.74 22776.94 7130.47 

Runtime 

(s) 
6.53 10.21 8.94 15.74 21.42 46.38 

SD: standard deviation 



The summary of other prediction metrics (correlation 
coefficient and success rate) and runtime performances 
(number of iterations and runtime) of the three methods are 
presented in Table I.   PSOVina

2LS
 has obtained a successful 

prediction rate of 70.77%, outperforming both PSOVina (-
5.13%) and Vina (-7.69%).  Although the average number of 
iterations in the PSO optimization process is increased in 
PSOVina

2LS
, PSOVina

2LS
 uses only about 73% of the time in 

PSOVina to finish each docking instance on average. This is 
expected since two-stage local search reduces unpromising and 
unnecessary local search loops; the saved time is used for 
performing more iterations of global search and promising 
local search.  

We also evaluated the effect of roughing factor (R) and 
roughing condition (Cr). As mentioned in Section III, the 
former is to reduce the number of iterations in the local search 
loop to achieve a shorter or rougher local optimization, 
whereas the latter is to control the number of initial PSO 
iterations which will invoke full local search in any case for the 
purpose of obtaining accurate information about the search 
space.  

In this experiment, we tested PSOVina
2LS

 using the 
PDBbind data set with different R and Cr settings, specifically 
R = {0.1, 0.3, 0.5} and Cr = {15, 18, 20, 22, 50}. For each pair 
of setting, we ran the full data set for 5 times independently 
and reported the RMSD of the overall-lowest-energy docked 
poses at the end of the 30

th
 docking repeat. The prediction 

accuracies in terms of average RMSD and the runtime 
performances are compared in Fig. 3 and Fig. 4 respectively. It 
is clear that neither the change in R nor Cr has much influence 
on the prediction accuracy although slight variations can be 
observed. The lowest average RMSD of 0.1924762 ± 
0.0065626 nm is reported by R = 0.1 and Cr = 18 and the 
second lowest of 0.1944068 ± 0.0020471 nm is reported by R 
= 0.3 and Cr = 15, whereas the highest average RMSD of 
0.2105162± 0.002127943 nm is reported by R = 0.5 and 
Cr=22. However, application of different R influences greatly 
the runtime. As shown in Fig. 4, dockings completed with 
average of 3.9 s, 5.3 s, and 6.5 s when using R = 0.1, 0.3, and 
0.5, respectively. Therefore, smaller R speeds up significantly 
across all tested Cr values.   

Table II shows the average total of local search function 
calls and energy evaluation function calls of PSOVina

2LS
 and 

PSOVina over the complete PDBbind data set in five 
independent docking runs. On average, as compared to 
PSOVina, PSOVina

2LS
 reduces the number of local search 

function calls by -5.85% and the number of energy evaluation 
by as much as -54%. 

Consider R = 0.1 and Cr = 18 as the optimal parameters of 
PSOVina

2LS
, we performed predictions on a selection of 17 

protein-ligand complexes derived from the GOLD benchmark 
data set. This allows us to compare our proposed method with 
9 state-of-the-art docking programs, including FIPSDock, 
PSO@AutoDock, SODOCK, AutoDock, Glide, GOLD, FlexX, 
Surflex, and MolDock. For completeness, we included 
predictions using PSOVina and AutoDock Vina which have 
not been tested on this data set before.  

The average RMSD as the prediction accuracy over 30 
docking repeats is shown in Fig. 5. The prediction performance 
is consistent with the previous experiment using PDBbind data 
set, i.e. PSOVina

2LS 
> PSOVina > AutoDock Vina. While 

AutoDock Vina maintains almost stable performance 
regardless of the number of repeated runs, the two PSOVina 
methods improve the predictions as more docking repeats were 
conducted.  The final predictions made by PSOVina

2LS
 and 

PSOVina (at the 30
th
 docking repeat) are with average RMSD 

of 0.129 and 0.192, respectively. Regarding the runtime, 
PSOVina

2LS
 achieves 1.92x speedup over PSOVina and 3.44x 

speedup over AutoDock Vina.  

Table IV lists the RMSD of each complex by 11 docking 
programs, where data of 9 state-of-the-art docking programs 
was taken from [7]. We can see that PSOVina

2LS
 and PSOVina 

performed comparably to other methods. A summary of their 
prediction performances is presented in Table V. Out of 17 
complexes, PSOVina

2LS
 predicts 15 cases successfully, 

yielding the highest success rate of 88.24% among all methods. 
The method which predicts with the lowest average RMSD is 
GOLD (11 cases) and FIPSDOCK, and the method which 
predicts with the lowest average RMSD among all successful 
cases is Surflex.  

Fig. 3. Evaluation of parameters R and Cr against average RMSD. 

 

Fig. 4. Evaluation of parameters R and Cr against average runtime. 

 

Fig. 5. Comparison of prediction accuracies of PSOVina2LS, PSOVina, and 

Autodock Vina in terms of average RMSD on the GOLD benchmark data set. 
The same PSO parameters were used for PSOVina2LS and PSOVina; the 

optimal parameters R=0.1 and Cr=18 are applied in PSOVina2LS.  

  



TABLE II.  COMPARISON OF THE AVERAGE NUMBER OF LOCAL SEARCH 

FUNCTION CALLS AND ENERGY EVALUATION FUNCTION CALLS  

 Local search function calls Energy evaluation function calls 

 PSOVina
2LS

 PSOVina PSOVina
2LS

 PSOVina 

Repeat 1 8564.77 9948.94 119783.79 252701.33 

Repeat 2 9751.88 9262.96 116849.58 252870.81 

Repeat 3 8416.94 9007.15 118007.1 252980.98 

Repeat 4 8760.14 9348.83 115000.77 253478.63 

Repeat 5 9025.26 9717.33 112331.01 252993.19 

Average 8903.80 9457.04 116394.45 253004.99 

SD 235.22 167.56 1279.63 129.47 

TABLE III.  SUMMARY OF PREDICTION AND RUNTIME PERFROMANCES OF 

PSOVINA
2LS, PSOVINA, AND AUTODOCK VINA ON THE GOLD BENCHMARK 

DATA SET 

 PSOVina
2LS

 PSOVina Vina 

 Value SD Value SD Value SD 

RMSD 

(nm) 
0.129 0.118 0.192 0.163 0.273 0.234 

r 0.387 – 0.425 – 0.363 – 

Success 

rate (%) 
88.24 – 76.47 – 58.82 – 

Number 

of 

iteration 

1063.27 834.38 865.56 355.95 20475 4311.70 

Runtime 

(s) 
2.66 2.53 5.11 5.16 9.16 9.71 

 

 

V. CONCLUSION 

In this paper, we have presented a two-stage local search 
method called PSOVina

2LS
 which implemented based on the 

original PSOVina in order to reduce the computing cost of the 
standard local search. The main idea of this method is to 
perform a rough local search to determine potentiality of a 
given solution before an expensive full local search is 
conducted. Empirical tests show that the rougher the first stage 
local search is, the less runtime the docking will take.  

The performance of PSOVina
2LS

 was compared with 
PSOVina, AutoDock Vina and nine other state-of-the-art 
docking programs. Our experimental results show that 
PSOVina

2LS
 has better prediction accuracy and runtime 

performance than PSOVina and AutoDock Vina. It also 
outperforms other docking methods with the highest success 
rate.  
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TABLE IV.  COMPARISON OF DOCKING ACCURACIES OF VARIOUS DOCKING PROGRAMS 

PDB Torsions PSOVina2LS PSOVina AutoDock Vina FIPS PSO@AutoDock SODOCK AutoDock Glide GOLD FlexX Surflex 

1bma 17 0.102 0.508 0.514 0.102 0.106 0.111 0.279 0.931 n/a 1.341 0.100 

1tmn 15 0.154 0.150 0.577 0.221 0.189 0.237 0.437 0.280 0.168 0.086 0.130 

1atl 13 0.303 0.461 0.455 0.079 0.087 0.091 0.130 0.094 n/a 0.206 0.701 

1fkg 13 0.148 0.668 0.675 0.116 0.110 0.106 0.130 0.125 0.181 0.759 0.181 

2sim 10 0.114 0.115 0.117 0.109 0.121 0.144 0.157 0.092 0.092 0.199 0.110 

6rnt 8 0.075 0.051 0.759 0.214 0.209 0.304 0.214 0.222 0.120 0.479 0.703 

1lst 7 0.076 0.101 0.104 0.052 0.048 0.053 0.052 0.014 0.087 0.071 0.033 

2cgr 7 0.032 0.032 0.033 0.081 0.082 0.081 0.087 0.038 0.099 0.353 0.163 

1lah 6 0.027 0.032 0.078 0.040 0.037 0.035 0.010 0.013 n/a 0.028 0.030 

1lcp 6 0.119 0.121 0.286 0.079 0.067 0.081 0.074 0.198 n/a 0.165 0.201 

1cbx 5 0.156 0.156 0.165 0.102 0.213 0.712 0.133 0.036 0.054 0.135 0.070 

1tni 5 0.353 0.340 0.299 0.202 0.353 0.492 0.261 0.218 n/a 0.271 0.297 

1hsl 4 0.156 0.155 0.154 0.035 0.037 0.032 0.110 0.131 0.097 0.059 0.051 

2ctc 4 0.089 0.070 0.147 0.092 0.091 0.133 0.133 0.161 0.032 0.197 0.038 

2cht 3 0.089 0.089 0.089 0.062 0.062 0.062 0.260 0.042 0.059 0.458 0.042 

1fki 2 0.025 0.025 0.025 0.080 0.080 0.080 0.080 0.192 0.071 0.059 0.070 

1tng 2 0.188 0.188 0.189 0.070 0.053 0.232 0.062 0.019 n/a 0.193 0.022 

  



TABLE V.  COMPARISON OF AVERAGE RMSDS AND SUCCESS RATES OF 

VARIOUS DOCKING PROGRAMS 

Method 
Average 

RMSD (nm) 
Success rate 

Average RMSD 

< 0.2 nm 

PSOVina2LS 0.129 88.24% 0.085 

FIPSDock 0.102 82.35% 0.059 

PSO@AutoDock 0.114 82.35% 0.063 

Glide 0.165 76.47% 0.068 

Surflex 0.173 76.47% 0.055 

PSOVina 0.192 76.47% 0.076 

AutoDock 0.153 70.59% 0.068 

SODOCK 0.176 70.59% 0.053 

GOLD (11 cases) 0.096 64.71% 0.062 

FlexX 0.298 58.82% 0.070 

AutoDock Vina 0.273 58.82% 0.065 
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